
Multiagent System Development Kits: An Evaluation

Elijah Bitting, Jonathan Carter, and Ali A. Ghorbani
Faculty of Computer Science
University of New Brunswick

Fredericton, NB, Canada

ABSTRACT
The complexity associated with development of Multiagent
Systems (MAS) may often be reduced greatly by the use of
existing Multiagent System Development Kits (MASDKs).
These kits provide the MAS developer with a wide range
of powerful agent and MAS building tools, specifically de-
signed to make the task of agent creation easier. The use
of a MASDK allows the developer to forget about specific
and tedious low-level implementation issues and focus on
the desired functioning of the agents themselves.

Few would disagree that these MASDKs are very use-
ful for developers, but which MASDK is best for each of
the countless application areas that exist in MAS research?
Which MASDK provides the best tools for communication?
Which makes the task of creating a distributed MAS easi-
est and which are even capable of facilitating the creation
of such MAS? These questions and others are the focus of
this work. Four top MASDKs are discussed and evaluated
according to specific evaluation criteria. These criteria are
divided into the following five categories: a) Basic attitudes,
such as sociability b) Advanced attitudes, such as meta-
management and mental attitudes c) Software Engineering
support for traditional Software Engineering concepts like
architectural description and prototyping d) Implementa-
tion issues such as the specific language used and debugging
facilities available, and e) Technical issues such as mobility,
concurrency and cost.

The MASDKs evaluated are listed here in descending or-
der by their final evaluation results: AgentBuilder, Jack,
AgentSheets, and OpenCybele.

Categories and Subject Descriptors
D.2.6 [Software]: Software Engineering—Programming En-
vironments; I.2.11 [Computing Methodologies]: Artifi-
cial Intelligence—Multiagent Systems

General Terms
Performance, Measurement

Keywords
Agent, multiagent systems, multiagent systems development
kits

1. INTRODUCTION
Although several different definitions of multiagent sys-

tems exist [18] [12] [11], we chose the following formal def-
inition for the purposes of our work. A multiagent system
is one comprised of the following elements: an environment
E, a set of objects O, an assembly of agents A, an assem-
bly of relations R, an assembly of operators P , and a set
of universal laws L [6]. The environment must be virtual
in nature. Objects are defined as things within the envi-
ronment that can be acted upon and situated within the
environment. Agents are a subset of objects that represent
the active entities within the system. Relations link objects
to one another while operations allow an agent to perceive
and manipulate other objects. Lastly, the universal laws
represent the application of operators and the reaction of
the world to these operators.

Due to the immaturity of the field, several differing def-
initions of agents can also be found [7, 17, 8]. We choose
to use Ferber’s general definition of agency [6]. An agent
must possess the following characteristics: capacity to act
and communicate with other agents, perceive an environ-
ment, utilize resources, and be driven by a set of tendencies.
The last requirement is a critical factor that distinguishes
agents from common objects.

In order to develop a MAS, researchers have several op-
tions. Often, they design an environment from scratch which
is highly specialized to their research that simulates the phe-
nomena they’re studying. In designing the environment, one
must consider the definition of the agent and incorporate
that definition into an environment that fully supports it.
As noted above, there are several different definitions and
perspectives of agenthood. Hence, a large number of MAS
possibilities result that incorporate these perspectives in as
efficient a manner as possible.

Based on our experiences, the environment must be able
to efficiently represent the complex internal architecture of
an agent. It must address issues of interagent communica-
tion (format and protocols), agent mobility (distribution),
resource allocation, inference mechanism support for agents,
agent knowledge representation, and scalability. There are

chimombe
Permission to make digital or hard copies of all or part of this work forpersonal or classroom use is granted without fee provided that copies arenot made or distributed for profit or commercial advantage and that copiesbear this notice and the full citation on the first page. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requires prior specificpermission and/or a fee.CNSR 2003 Conference, May 15-16, 2003, Moncton, New Brunswick,Canada.Copyright 2003 CNSR Project 1-55131-080-5 ...$5.00

chimombe
80 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

more issues as well [16].
Researchers have another option when it comes to devel-

oping a MAS. They can chose to use a multiagent system
development kit (MASDK) that addresses many of the con-
cerns outlined above [5, 2]. In such kits, it is important to
still have the flexibility to modify the internal functioning of
the underlying architecture to give the researcher maximum
control and freedom.

An initial search for existing MASDKs was undertaken
only to find over 40 available [5]. We have selected four
MASDKs for evaluation. Three of the four MASDKs were
chosen according to popularity ratings found at the Agent-
land web site [2]. AgentBuilder [1], AgentSheets [3] and
Jack [9] were selected for evaluation. OpenCybele, although
not rated at Agentland, has been used for the creation of
MAS testbed environments based on historical considera-
tion of previous work. Once the four were chosen, we set
about using the packages and reading their documentation
in order to perform a comparative evaluation.

An evaluation of MASDKs cannot be done by simply us-
ing a system for a few hours and giving an opinion. A set of
criteria must be developed upon which the evaluation will
be based for comparison. Using accepted criteria for the
evaluation lends credibility to the results and simplifies the
evaluation process. Following these principles, we chose to
use criteria already developed by Austrian researchers Eiter
and Mascardi [5]. The criteria chosen fall into five cate-
gories, each of which are more thoroughly described below.

Sociality: Aspects concerning sociality are central to most
work related to MAS. Interactions are facilitated by the use
of an accepted agent communication language (ACL) and
facilities for high-level communication [19].

Advanced Attitudes: Advanced attitudes include such
constructs as: mental attitudes, deliberate capabilities (plan-
ning), meta-management (reasoning about the self), and
adaptivity [19].

Software Engineering Support: Criteria associated with
this aspect of evaluation are useful for the evaluation of any
software development package. Sound use of software en-
gineering principles promotes the creation of higher quality
software [10, 15, 13]. Furthermore, this eases the task of soft-
ware development for all involved. MASDKs are evaluated
according to the extent to which they provide the following:
clear development methodology, architectural description,
internal functioning of a single agent, documentation, pro-
totyping and simulation capabilities .

Implementation: This dimension of evaluation is con-
cerned with the specifics of the implementation of a de-
velopment kit and how it implements the MAS it creates.
The criteria are based on how the MASDK supports: agent
implementation language, the integrated development envi-
ronment (IDE) GUI for agent and MAS definition, agent
skeletons, and debugging [16].

Technical Issues: This category of evaluation criteria con-
cerns itself with important aspects of MASDKs which are
not covered by any of the above categories. Included in this
section are the following: mobility, concurrency, real-time
control, and economic cost.

The following sections present a brief overview of each of
the MASDKs that were evaluated. Each MASDKs philoso-
phy of design and agent definition is presented.

1.1 AgentSheets
AgentSheets is an agent-based simulation tool that lets

end-users create simulations within an easy-to-use GUI de-
velopment environment. Through this environment, the fo-
cus shifts from agent implementation issues (such as com-
munication methodology and resource allocation) to agent
design issues. The developer focuses on the rules and behav-
iors of the agent and their net effect within a society of these
agents. In essence, users can focus on emergent behaviors
rather than individual agents.

AgentSheets implements the society through a combina-
tion of Java authoring tools, spreadsheets, and agents. Agents
are defined as reactive, end-user programmable objects. They
react to external events such as mouse clicks, keyboard in-
put, and messages from other agents. This definition is
highly simplified and does not address planning, intelligence,
mental capacity, and meta-management. Through this def-
inition, agents are seen as a collection of methods. Each
method corresponds to one external event. Methods are
composed of rules. Rules are if-then-else clauses that ex-
ecute actions based on some set of condition statements.
Methods, rules, conditions, and actions are all predefined
structures within a GUI palette and they are drag-and-
dropped into agents by the user. The user is responsible
for filling in the corresponding parameters.

AgentSheets utilizes the concept of tactile programming.
Tactile programming is defined by AgentSheets as the next
logical step of object-oriented development. In this model,
agents are visually developed and must be graphically de-
picted within their environment. The emphasis is placed on
visual development and the communication of the underly-
ing rules, behaviors, and actions of agents during real-time
simulation. The programming becomes tactile because of
the heavy emphasis on GUIs for developing and manipulat-
ing agents.

1.2 AgentBuilder
AgentBuilder makes the task of creating ‘intelligent’ agents

a relatively easy one. While slightly more complex to use
than other packages reviewed (AgentSheets for example),
AgentBuilder is capable of facilitating the production of au-
tonomous, environmentally aware, reasoning, communicat-
ing agents, as well as collections or agencies of these agents.

AgentBuilder provides a powerful mental model for its
agents, allowing developers to easily specify such things as
beliefs, intentions, commitments, and behavioral rules. In
addition, use is made of popularly accepted standards such
as KQML for the agent communication language along with
use of UML-like object modelling facilities to model domain
knowledge of an agent. The Knowledge Query and Manipu-
lation Language or KQML is both a language for comunica-
tion amongst intelligent agents and a network programming
protocal [1].

To ease the agent development process, AgentBuilder pro-
vides GUI interfaces for almost all agent development tasks
such as: overall project organization, protocol specification,
defining agency layout, examining (watching) running agen-
cies, specifying agent behavior, creating running agents, and
debugging. These are all tied together under a simple IDE

chimombe
Session B2 Communication Networks and Services Research Conference 2003 81

chimombe

within a Windows environment.
The extendability of AgentBuilder is largely due to its use

of external classes, called Project Accessory Classes (PACs).
The agent relies on PACs for storage, retrieval, processing,
and communication of data. The belief set is composed of
PACs as well. These PACs can be written in Java, C++, or
legacy languages.

1.3 Jack
Jack Intelligent Agents is a development environment that

is built on top of Java and acts as an extension of Java
that offers classes for implementing agent behavior. Jack
defines its agents as being ‘intelligent’. These types of agents
model reasoning behavior according to the theoretical Belief-
Desire-Intention (BDI) model of artificial intelligence.

When an agent is instantiated in the system, it can do
several different things. It can respond to goals that have
been explicitly set by another agent or the user. It can also
respond to external stimuli that are represented as events.
In both cases, an agent will respond if it believes the event
or goal has not been satisfied and is appropriate to respond
to. Upon receiving the event, the agent searches through all
available plans for ones that are relevant to the request and
applicable to the situation. Actions within a chosen plan are
then executed. At the same time, the agent is able to focus
on what is important and the planning process. The BDI
model views agents as collections of plans that are executed
under specific conditions.

1.4 OpenCybele
OpenCybele uses a different approach to agency than other

packages evaluated. Agents are defined as “a group of event-
driven activities that share data, thread, and execution con-
currency structure.” This definition centers the agent on
the notion of events triggering activities (stimulus-response).
Activities in this case are ‘active objects’ internal to the
agent and act on internal data in response to incoming events.
The fact that other agents are incapable of manipulating the
internal data of another reinforces the notion of agent au-
tonomy. Instead of directly manipulating another’s data or
calling an agent’s function, OpenCybele agents are limited
to generating and delivering events that may or may not
trigger the desired response in the other agents of the MAS.

Programming OpenCybele agents requires that develop-
ers use Activity Centric Programming (ACP). ACP (de-
scribed in detail in the OpenCybele user manual) concen-
trates on agent activities as the core components of a sys-
tem. This can be contrasted to the traditional functional
approach where functions and function calls are the core
components of a system.

Cybele is less friendly for the novice user than the other
packages evaluated. It requires a substantial knowledge of
object oriented programming concepts that are used heav-
ily throughout this approach to agents. In addition, the
agent execution states, associated inter-agent concurrency
relationships, and state transitions are very confusing with-
out thorough study. A possible reason that this system
seems more difficult to learn and use in comparison with the
other MASDKs evaluated so far is that OpenCybele is not a
MASDK but an agent infrastructure. OpenCybele provides
most of the facilities and functionality of a MASDK without
the IDE or GUI environment.

2. EVALUATION CRITERIA
In order to obtain objective results from the evaluation

described here, we have devised a weighting scheme that
utilizes the results summarized in Figure 7. This weighting
scheme first ranks the individual criterion on a scale of 1 to 3.
A ranking of 1 being a criterion that is desired to be included
in the system but not necessary or useful. A ranking of 2
means that the criterion is desired and considered useful.
A ranking of 3 designates this criterion as necessary. This
weighting can be expressed as a weight vector W , where

W = {w1, w2, ..., wn} (1)

and wi represents the rank of criterion i. Figure 1 shows
our assignment of relative importance to each of the chosen
criteria. Note that the agent language and overall cost crite-
ria are not imcluded in this weight vector as no meaningful
weight can be asisgneed to them.

Once the ranking of the chosen criteria is complete, a
calculation is performed on the basis of the ranking of the
individual criteria and the results of the evaluation itself.
In evaluating the desired MASDKs by applying the selected
criteria, results in the form {supported, partially supported,
and not supported} are obtained. We assign the following
percentages: supported equals 100%, partially supported
equals 50%, and not supported equals 0% to each criterion.
From these percentages, we create another vector similar to
W , called S where

S = {s1, s2, ..., sn} (2)

and si is the fulfilment percentage associated with criterion
i.

Using W and S, we calculate a numeric value associated
with each MASDK evaluated. We perform the simple dot
product W ·S. It results in a scalar value that measures the
overall quality of the MASDKs evaluated. The criterion are
presented below.

2.1 Basic Attitudes
Basic attitudes are those which determine the basic func-

tioning of an agent and directly influence its behavior. The-
orists use these basic attitudes to describe what constitutes
an agent. Autonomy, reactivity, and sociability are consid-
ered basic attitudes. The problem with discussing these at-
titudes is that there is no consensus as to what combination
of these attitudes constitute agenthood [5]. As a result, only
the most fundamental are singled out for use as evaluation
criterion. Sociability is considered essential for a MAS be-
cause the lack of social interaction amongst agents prevents
collaboration of any sort. The resulting MAS is reduced to
a collection of independent agents.

Sociability is considered a basic attitude of autonomous
agents along with such attitudes as reactivity and auton-
omy [19]. Sociability is singled out as an important criteria
as socialization lies at the heart of most MASs. We consider
two aspects of sociability here: the use of an accepted agent
communication language (ACL), and the support of high-
level communication between agents. The use of an ACL is
considered because the use of a standard ACL like Knowl-
edge Query and Manipulation Language (KQML) or Foun-
dation for Intelligent Physical Agents (FIPA) can facilitate
the acceptance of a MAS. This facilitates the development
of complex communication facilities.

chimombe
82 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

Figure 1: Weight Vector W (the relative importance of each of the chosen criteria; 1=desired but not
necessary, 2=useful and 3=necessary).

The ability to exchange high-level information is impor-
tant for similar reasons. High-level communication allows
for an abstraction of low-level communication system details
(such as detection of message loss), providing the developer
with a simplified transparent communication system.

2.2 Advanced Attitudes
These attitudes go beyond the realm of the basic atti-

tudes described above. Advanced attitudes allow the agent
to develop behaviors that are more complex and powerful
than the basic attitudes that define agenthood. The ad-
vanced attitudes selected as evaluation criteria allow agents
to improve their reasoning methodoligies by expanding the
factors they consider for decision making [19].
Mental Attitudes: A system supporting mental attitudes
would have to include support for such things as commit-
ments, beliefs, intentions, and desires.
Deliberate Capabilities: These are defined as the ability
of an agent to act deliberately. These acts include planning
in order to satisfy some intention or desire [14, 19]. Planning
is useful for almost any AI area, thus making it an important
evaluation criterion for MASDK evaluation.
Meta-Management: Meta-management involves the abil-
ity of an agent to reason about itself. Such agents must
maintain some sort of model of themselves and their actions
and beliefs. An agent with these capabilities is said to be
reflective.
Adaptivity: Agents who are able to change in order to
adapt to a situation or particular environment are said to
be adaptive. This adaptation, in a broader sense, is learning.
Agents with learning mechanisms are said to be adaptive.

2.3 Software Engineering Support
Software engineering issues are considered important eval-

uation criteria for MASDKs. Software engineering projects
should make use of established software engineering method-
ologies for consistantly more reliable, correct, and readable
code [10, 15, 4, 13]. This dimension of evaluation is the most
practical from a development perspective as it concerns itself
with the software development life cycle. The general issues
surrounding this cycle include the following: methodology,
architecture, documentation, debugging and simulation. Is-
sues concerning the documentation of agenthood and agent
architecture are also added.
Methodology: Methodology is a clear sequence of steps
laid out in order to build a simple agent or agency. The
presence of such a development methodology eases the de-
velopment process and greatly reduces the learning curve
for MASDKs. Whether or not the MASDK provides a clear

methodology is a point worth consideration while evaluating
MASDKs for comparison.
Architectural Description: It is described thorough doc-
umentation of the actual architectural design of the develop-
ment kit in terms of class structures, functional description,
and services provided. This information is extremely valu-
able to anyone wishing to make extensive use of a MASDK
for serious development.
Internal Functioning of Single Agent: Some MASDKs
provide only the most basic description of how the individual
agents operate. It is necessary to provide a detailed descrip-
tion of the agent model, as well as how that agent operates
in the MAS environment. Exactly how, and in what order
an agent determines the examination of behavioral rules at
any time constitutes the internal functioning.
Documentation: For obvious reasons, the provision of
meaningful and useful documentation of the MASDK spec-
ification is invaluable to the agent developer. Quality docu-
mentation can make the difference between a great MASDK
and one that is unusable.
Prototyping: Providing standard functional agent defini-
tions, or even standard agencies for common useful applica-
tions is referred to as prototyping. The MASDK that makes
use of prototyping will provide one or more re-usable proto-
type definitions.
Simulation: Simulation in this situation refers to the abil-
ity of a development kit to provide facilities for the developer
to monitor and record certain specific statistics regarding
the execution of an agency. The ability to record the num-
ber of interactions between two agents in some time interval
would require some sort of simulation facilities.

2.4 Implementation
It is important to examine the peripheral issues related to

software engineering because they have a big impact on the
final product. The impacts are manifested through devel-
opment time, underlying architecture, the look-and-feel of
the product, and the performance. Below, the issues of soft-
ware language, integrated development environment (IDE),
skeleton code, and debugging facilities are addressed in more
detail.
Agent Implementation Language: The agent imple-
mentation language is the language in which the code for
an agent is written. Some packages use standard languages
like Java or C++, while others use extensions to languages
like these or proprietary agent programming languages.
Agent and MAS definition GUI (IDE): This is a graph-
ical interface provided to ease the development of agents.
Instead of having to write out a list of preconditions for a

chimombe
Session B2 Communication Networks and Services Research Conference 2003 83

chimombe

behavioral rule, a GUI might provide a list of possible pre-
conditions for the developer to select from. Such a GUI,
if properly designed, can greatly simplify and speed up the
development of agents and corresponding MAS.
Agent Skeletons: Much like prototypes described above,
agent skeletons are simplified pieces of agent-code that rep-
resent standard agent roles. Such a skeleton might be a
buyer agent, or a utility skeleton. A MASDK that provides
some of these skeletons can make some MAS development
tasks much simpler.
Debugging Facilities: Debugging capabilities are essen-
tial for the MAS developer. Debugging helps to create func-
tionally correct programs. It often allows a developer to see
the system in a critical way that is not available without
debugging facilities. Facilities could allow a developer of an
MAS to watch the values inside the belief system of one of
the agents as the agent executes in the MAS.

2.5 Technical Issues
This selection of criteria is related to the availability of

services provided by the agent environments created using
the MASDK. These services can have a dramatic impact on
the time of development as the responsibility of providing
these used services is shifted away from the developers. Al-
though none of these services are necessary for a MAS, they
are often desired.
Mobility: This criterion specifies if agents developed using
a specific MASDK are capable of moving from one system to
another while maintaining their capability to interact with
the rest of the members of its MAS. Mobility can facilitate
development in several specific domains, such as distributed
computing and information sharing and gathering.
Concurrency: A MASDK capable of creating agents that
execute in their own thread (i.e. are not part of a bigger
process) is said to have concurrency. This idea facilitates
true autonomy and real time computing. Concurrency also
allows developers to make use of multiprocessor environ-
ments, as different threads can be processed simultaneously
on different processors. Hence, true multitasking is estab-
lished.
Real Time Control: Closely related to simulation and de-
bugging, real time control gives the developer the freedom
to set or change certain aspects of the MAS at their discre-
tion during run-time. This control gives the developer the
freedom to manipulate the MAS to reflect a desired situa-
tion.
Cost: For most developers, the cost of a development kit is
of great importance.

2.6 Economic
Economic issues are important when considering the long-

term viability of the MASDK. Due to the volatility of the
research and the industry, it is important to seek a MASDK
that will have long-term support from the original develop-
ers. Corporate consideration must be given to attain the
likelihood of long-term support. This section addresses the
issues of corporate knowledge, history, and support.
Knowledge of Vendor: Knowledge of a vendor providing
a MASDK (or the lack thereof) is an important factor in
comparing MASDKs. Developers can be more assured of
continued support for a MASDK product from vendors they
know to be reputable.
Documentation, Training, and Support: As stated

above, documentation is a powerful tool for the MAS de-
veloper. Similarly, training and product support are equally
important factors for the developer as they may be required
to solve problems along the way to developing a MAS.

3. MASDK EVALUATIONS
This section is concerned with the results of evaluations of

the MASDKs considered. These evaluations are performed
based on the criteria outlined in Section 2. Each section
gives first impressions followed by a discussion of the criteria.

3.1 AgentSheets
AgentSheets looks very easy to use and highly simplified

yet powerful in certain situations. The rule editor makes
it easy to create prolog-like rules. The simulations seem
versatile and easy to create and modify. As a limiting factor,
the system does not support adequate message passing. This
restricts the inter-agent communication and collaboration
capabilities.

For the modelling of natural phenomena (reactivity to en-
vironmental cues), this system seems very appropriate. It
is ideally suited for reactive agents as opposed to cognitive
ones.

3.1.1 Evaluation
Once again, Java 2 is the choice of language implementa-

tion for the development environment. The choice of using
an interpretive language for implementation has many im-
plications on the performance of the underlying system. In
this case, AgentSheets was slow and required a vast amount
of memory in order to run without problems.

This development kit was designed with a non-programmer
in mind. Development occurs only through a GUI environ-
ment. This dramatically reduces the skills necessary for de-
velopment as the designer can focus more on design and
less on implementation issues. The methods, rules, and
conditions are designed through a drag-and-drop interface
from the appropriate palettes to the given agent. Natu-
rally, this heavy reliance on a GUI will hinder more sophis-
ticated development related to the internal functioning of
AgentSheets.

AgentSheets does not support a default agent communi-
cation language such as KQML. This can severely limit the
inter-operability of agents generated through AgentSheets
with other external agents. Agents communicate with each
other through the use of a ‘make’ command. This command
is very limited in its functionality. This command will gener-
ate a message from one agent to another agent immediately
adjacent to it. The message cannot have any parameters and
the sender cannot uniquely identify the intended recipient of
the message. The event handler of the receiving agent is re-
sponsible for then executing actions based on the incoming
message. This limitation on message passing is perhaps the
greatest weakness of the development environment because
it reduces the communicative capacity of the entire society.

No desires, beliefs, or commitments can be directly im-
plemented in any given agent. Agents do have access to a
local set of variables. As such, mental states could be repre-
sented through the use of the local variables. Furthermore,
planning is not accounted for in AgentSheet’s model of an
agent. An agent has a very limited perception of its envi-
ronment and goals. It can only respond to external stimuli.
In that sense, a plan of action can be explicitly hard-coded

chimombe
84 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

Figure 2: AgentSheets Analysis Overview.

into an agent in response to these stimuli. Reasoning about
plans, however, is not possible. Meta-management is not
automatically included within their definition of an agent.
It is possible for an agent to monitor its own internal state
through the use of local variables. This would have to be
explicitly written by the developer.

AgentSheets does not include any facilities for learning
mechanisms per se. Agents can only respond to external
signals. Hence, learning mechanisms such as neural net-
works would have to be explicitly written by the developer.
These mechanisms would then have to be somehow related
to external stimuli in order to execute.

On the positive side, AgentSheets provides an excellent
methodology for developing and deploying agents. The steps
to do so are clearly laid out and easy to implement as laid out
in the ”Getting Started” user manual. This product was de-
signed with the end-user in mind. It does not attempt to de-
scribe the internal functioning of AgentSheets from an archi-
tectural perspective. Through the use of AgentSheet’s Risit-
tero, Java applications can be developed that produce the
simulations carried out. Reverse engineering could be ap-
plied to learn of the underlying architecture of AgentSheets.
No attempt is made to explain this architecture within any
of the found product documentation.

AgentSheet’s documentation is very thorough (from a non-
technical perspective) and includes the following: user man-
ual, language reference guide, a guide to getting started,
and an example project snapshot. As well, their web site
provides abundant support for their product through tuto-
rial movies, teacher guides, and an agent exchange program.
The agent exchange program is a listing of real agents that
have been implemented at various universities that serve as
bigger examples than those provided with the software by
default. Although a FAQ is advertised within their support
section, it is unavailable for viewing due to unknown tech-
nical problems related to their server.

Within the documentation, internal behavior of an agent
is examined in relation to the order of rule firing. Rule firing
involves the testing of conditions and executing the corre-
sponding actions within the given method of that agent. It
is necessary to examine the rule precedence to predict be-
havior. AgentSheets does a good job of explaining this and
other internal mechanisms that govern an agent’s behavior.

Agent prototyping is possible in a very non-traditional
sense. As a developer defines an agent, various depictions of
an agent are possible. Each depiction represents a graphical
representation of a given instance of that agent type. It is
possible to create a prototypical agent that has several dif-
fering states. As such, each state can have its own graphical
depiction. In this sense, a standard functional agent can

be a prototype for instances of itself. Prototyping is not
possible in the more traditional sense because the behaviors
cannot be extended or inherited between agent types.

AgentSheets does, however, do an excellent job of ficili-
tating simulations. This system appears to be based on the
premise that simulations are the goal of agent development.
Agents are placed on a graphical worksheet and simulations
follow. Users can change the types of agents and surround-
ing environment in real-time. Due to the heavy focus on
a graphical environment, the tasks of starting up, shutting
down, and manipulating simulations is very easy.

The simulator does a very good job of allowing real-time
changes to data internal to agents and the supporting envi-
ronment. Global and local variable manipulation is possi-
ble. Global variables are those that can be shared between
all agents while local variables are those that are private to
an individual agent.

Run-time support for debugging is provided in abundance
through a graphical user interface (GUI). A user can exam-
ine the internal variables of an agent as it runs through
cycles. Through this same interface, a user can monitor in-
ternal rule firing. The debugging facilities of AgentSheets
are perhaps one of AgentSheet’s best features.

Agent skeletons are not provided by default. While the
underlying code for basic functions of all agents (movement,
signal passing, variable storage) is pre-written, it is the user’s
responsibility to define the functionality of all agents within
their environment.

Agent mobility is not possible with AgentSheets. Agents
cannot communicate outside the immediate environment.
Once again, the lack of agent communication facilities limits
the potential applications of AgentSheets.

Although no explicit references to concurrency are made
in the user manual, it is possible to implement concurrency
between agents through the use of signal passing. Resources
can be shared through the sending of signals between agents.
Due to the fact that there is no central service to handle
resource sharing and concurrency, we decided that concur-
rency is only partially supported through the developer’s
own means. Once again, the imposed limitations of agent
communication reduce the functionality of the overall sys-
tem.

3.1.2 Rating
Figure 2 presents a graphical overview of the evaluation

outlined above. The 100, 50 and 0 values correspond to
the level of support for the associated criteria in percent.
Based on the previously mentioned marking scheme, an ob-
jective measure of the overall MASDK can be calculated in
a straight forward manner using 2. AgentSheets scores a

chimombe
Session B2 Communication Networks and Services Research Conference 2003 85

chimombe

value of 23.5 out of a possible 39 points (60.2%).

3.2 AgentBuilder
The first observation made is that the installation proce-

dures for the AgentBuilder MASDK are relatively simple.
AgentBuilder is Java-based so slowness is expected. Al-
though slow, the GUI is very good and makes navigating
the complex environment fairly simple. Very thorough doc-
umentation is available as well as various forms of support
online including: frequently asked questions (FAQ), exam-
ples, listings of reported bugs, and a mailing list.

AgentBuilder makes use of an extensive agent model. The
mental component of the agent model is well developed.
AgentBuilder also has powerful environment modelling fa-
cilities through the use of the Unified Modelling Language
(UML). UML designers should find design of agencies simple
within AgentBuilder.

3.2.1 Evaluation
Sociality is of the utmost concern for AgentBuilder; the

communication mechanisms provided are versatile and pow-
erful. These mechanisms greatly simplify the task of cre-
ating agencies where rich structured data is passed from
agent to agent. AgentBuilder implements a Project Acces-
sory Class (PAC) called KqmlMessage that includes the fol-
lowing attributes:

String sender String receiver String performative

String contentType Object content

This PAC embodies the knowledge query markup lan-
guage (KQML). As a standard in agent communication lan-
guages, KQML provides AgentBuilder with a stable founda-
tion on which to build agent communication protocols and
systems. KQML provides versatile and powerful message
passing. Note that the content attribute of a KQML mes-
sage is a generic Object reference, possibly referring to any
data type. This abstraction of message contents allows for
the use of existing (or creation of new) generic communica-
tion protocols that are given the power to ignore the actual
contents of the messages that will be passed.

Advanced attitudes, as defined above, are supported to
various degrees within AgentBuilder. Mental attitudes are
not modelled explicitly in the system, but could be im-
plemented as part of the existing mental model. In re-
gards to the advanced attitude of deliberate capabilities
or planning, a built-in planning mechanism is not imple-
mented in AgentBuilder. The development kit does, how-
ever, support the use of external planning modules. The
third advanced attitude considered is meta-management.
While AgentBuilder does not explicitly make use of meta-
management, the agent belief set includes an agent record
corresponding to the SELF of that particular agent. This
SELF instance contains the beliefs an agent holds about it-
self. Through the use of this information and its intentions
and other beliefs, agents are given the ability to evaluate
their own status and change appropriately. The adaptivity
attitude or learning capabilities of agents developed with
AgentBuilder are great because of the support for external
learning modules. AgentBuilder does not, however, imple-
ment any learning mechanisms that developers could easily
take take advantage of.

The methodology of building either a single agent or a
collection of agents is laid out very clearly in the Agent-

Builder documentation. The AgentBuilder user manual pro-
vides several chapters that are dedicated to the theory and
methods of agent and agency development. In addition, sev-
eral more chapters are dedicated to step-by-step examples
of several different types of agents. This includes several
examples of creating communicating agents.

A full architectural description of the system is provided
in the reference manual, including a full description of all
the subsystems (e.g. Project manager, Ontology manager).
In addition to a detailed specification of the AgentBuilder
MASDK system, the detailed architecture of an AgentBuilder
intelligent agent is provided and discussed at length in the
user manual. Diagrams and flowcharts help in the descrip-
tive presentation of this architecture. The AgentBuilder
user manual (with regards to documentation) is very use-
ful and extensive. In addition, a reference manual is made
available to help developers with rich information concern-
ing nearly all aspects of the system.

Like most other MASDKs on the market, agents devel-
oped with AgentBuilder are implemented in Java. In ad-
dition, the Java GUIs used by AgentBuilder provide most
of the functionality of the MASDK. Some of the GUIs de-
fined are for: defining Agent behavioral rules, specifying pro-
tocols, defining agencies, watching executing agencies, and
debugging. AgentBuilder allows the developer to debug the
running agent by examining its mental model. The debug-
ger can perform standard debugging tasks like setting break-
points and stepping through agent actions. The debugger
provides the developer with some limited real-time control
of agencies. Execution can be stopped, values changed, then
execution can be halted, resumed, or a step-by-step run can
be performed.

The AgentBuilder documentation contains no indication
that agents built with AgentBuilder are capable of migrating
from one system to another. If such a capability exists for
AgentBuilder agents, it is not documented. Similarly, no
documentation indicating support for concurrent execution
of agents in AgentBuilder was found.

3.2.2 Rating
Figure 3 shows a summary of the evaluation results out-

lined above. Based on the previously mentioned marking
scheme, an objective measure of the overall MASDK can
be calculated using the assigned weights from Figure 1 and
the individual evaluation results for each MASDK. Agent-
Builder scores a value of 31.5 out of a possible 39 points
(80.8%).

3.3 Jack
The first thing we noticed was that Jack was another Java-

based MASDK, which means slow.

3.3.1 Evaluation
Although JACK does address the issue of inter-agent com-

munication and provides a communication network, it does
not make use of any pre-existing standard agent communi-
cation language.

Standard message passing through the JACK communica-
tion layer or ‘DCI network’ is used. The DCI network runs
as a network layer just over the transport layer and uses
UDP as a transport protocol by default. Because UDP is
connectionless and does not guarantee packet delivery, DCI
provides a guarantee of delivery on messages.

chimombe
86 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

Figure 3: AgentBuilder Analysis Overview.

The BDI model of an agent is centered about the idea
of mental attitudes. It is the beliefs desires and intentions
themselves that are considered mental attitudes. Beliefs of
the agent are all the pieces of information it has about its
environment, other agents or itself. Desires are simply goals,
or what the agent wishes to accomplish. Intentions corre-
spond to what we usually call plans.

JACK provides constructs for planning including a plan
base class, which is extendable for creating powerful plans.
The JACK Agent Language includes several reasoning method
statements corresponding to common planning actions.

In addition JACK defines a special capabilities construct
as a collection of events, beliefsets, plans, other capabilities
and Java code. These capabilities represent modular func-
tional components that can be plugged into or removed from
agents. The fact that these capabilities contain plans could
alone qualify them as deliberate capabilities, but these con-
structs also facilitate the chore of planning and reasoning
about planning.

The JACK Agent Language provides a declaration: #
chooses for event, that allows agents to not only reason
about plans that correspond to specified events, but also
to reason about what plans to use for a specific event. This
is considered Meta-level reasoning.

Jack does not directly provide any high-level functionality
that offers support for adaptivity; although there is abun-
dant support for the ability to alter views, beliefs, change
in selection of plans, and capabilities. As such, the desire
to include adaptivity would be an exercise in designing al-
gorithms that implement these methods. Our view is that
Jack supports partial adaptivity.

The Jack user manual lays out clearly how to build agents.
In addition several examples are provided with useful Jack
agent language code. As a drawback no clear methodology
is presented for creating collections of agents that interact
in a standard multiagent system.

Jack does, however, provide an extension to the standard
Jack package called SimpleTeam which facilitates construc-
tion of work-sharing agencies. The documentation for Sim-
pleTeams does certainly outline how to create agencies.

Jack consists of three main components: The Jack agent
language, Jack agent compiler, and Jack agent kernel. Jack’s
user manual gives a description of these three components
but only a full architectural description of the Jack agent
language including all the statements, declarations, classes,
and methods. Since the Jack agent language is such a major
component of JACK and it is fully described, we might say
that a good architectural description is provided with the
system.

The internal functioning of one single agent is addressed

in detail in the documentation. The functioning of an agent
is the focus of several chapters in the user manual. This
description includes discussion of agent theory and how it
translates to Jack agents as well as the specifics of how Jack
agents use their beliefs, views, capabilities, and plans to act
in their environment.

The Jack documentation is extensive. A full user manual
is available online. The user manual is extensive and suf-
ficient to lean most of the Jack Intelligent Agents system.
In addition an API reference is provided for the runtime,
compiler and BDI (communication network) modules. Also
a document specifying several Jack examples is available,
called practicals.

Jack agents are implemented in a proprietary language
built on Java called the Jack Agent Language. The Jack
Agent Language is actually a superset of Java.

Jack provides an excellent GUI for defining agents within
projects. The GUI allows for modification to the agents’
views, belief sets, capabilities, and plans. Jack also contains
an object browser (JACOB) that provides object modeling
for communication of objects between agents and inputting
of agents. Both GUIs are very similar to Microsoft’s Vi-
sual Studio environment and appear well thought out. Due
to the choice of language implementation, the GUI is not
quick to respond to external events such as mouse clicks
and keyboard input.

JACK uses by default an agent class that can be extended
by the user using the Jack language. Underneath the Jack
language lies Java. Java developers should not have any
problem with understanding the Jack language as it is very
similar to its underlying implementation language.

The Agent Interaction Diagram showing a graphical rep-
resentation of agent interaction is available for debugging
purposes. In addition the simulation clock mentioned above
in the simulation section could be used like a ’step through’
command to examine running agents step-by-step. Also by
setting certain debugging command line attributes, develop-
ers can trace all messages and events that occur in a system.
According to the Jack user manual, an integrated debugging
environment will be provided with Jack soon.

Partial mobility is provided through Jack’s DCI commu-
nication network. This network allows agents to communi-
cate through ports using a Jack transport protocol (UDP
with guaranteed reliability). Agents can transmit data but
code cannot be transmitted per se. In other words, there
is not a direct facility for transmitting entire agent defini-
tions from one system to the next. It would be possible to
work around this by having standard agents that receive sig-
nals from other agents to generate new agents with certain
properties. This would essentially do the same thing.

chimombe
Session B2 Communication Networks and Services Research Conference 2003 87

chimombe

Figure 4: Jack Analysis Overview.

The simulation clock mentioned above could be used as
a real-time control. The clock would explicitly control the
execution cycles of the system, and the developer would be
free to make modifications between any of the cycles.

3.3.2 Rating
Figure 4 denotes the summary of the evaluation conducted

above. Based on the previously mentioned marking scheme,
Jack receives 29.5 points out of 39 available points (76%).

3.4 OpenCybele
OpenCybele is an agent infrastructure written in Java 2.

It provides facilities for agent development (in Java) as well
as methodologies for creating multiagent systems. While
this package is not a bonafide MASDK, we have chosen to
include it in this evaluation of MASDKs in order to provide
a broader perspective into multiagent development environ-
ments in general. Also, use of OpenCybele was considered
in the past without any formal evaluation. This provides
further motivation to include the package in this evaluation.

3.4.1 Evaluation
OpenCybele does not take advantage of any existing ACL

standard. Planned updates to Cybele, however, include im-
plementations of FIPA, a widely accepted agent communi-
cation language. As far as message passing is concerned,
Cybele includes support for both synchronous and asyn-
chronous P2P, multicast, and broadcast, of both commu-
nication and message events.

Cybele does not include a cognitive model in its system.
As such there are no attitudes included in the model of an
agent in Cybele. While Cybele does have the capability to
support plans, the system does not provide a facility for
defining plans. Nor does Cybele have the ability to plan
in terms of dynamically reasoning about what activities are
performed in response to an action. Agents are capable of
creating self-triggers, which control their own actions, but
this is not meta-management. Learning is not supported
other than the fact that due to its open nature, developers
are given the freedom to add or remove various functionality
including learning and Adaptivity.

A very clear sequence of steps for creating and executing a
simple Cybele environment and agents is laid out clearly in
the user manual. In addition to these simple methodologies,
more complex methodologies are presented as part of exam-
ple systems. The overall architecture of Cybele is based on
services and interfaces, very closely related to OOP (Activity
Centric Programming [ACP] is presented as an abstraction
over OOP). A full description of this architecture is avail-
able through the user manual, as well as useful information

on the OpenCybele web page.
The internal functioning of a single agent is the focus of

much of the Cybele documentation. Cybele uses ACP as a
model for developing agents which leads to the functionality
of the Cybele agent. This functionality is based on local
activities that are executed in response to actions perceived
through action messages sent to the agent. The documenta-
tion is not extensive, but thorough enough to fully describe
the agent infrastructure that is Cybele. A developer’s guide
is promised at the Cybele web site, which would round out
the documentation nicely.

While several examples of simulations are provided with
Cybele, no built-in simulation facilities are provided or doc-
umented. Similarly, it appears that no standard agents are
provided within the OpenCybele environment. The user
documentation addresses the roles of the people developing
a MAS but does not address any default roles within its
agents. Other notable shortcomings of Cybele include the
abscence of any standard debugging facilities or an IDE. A
lack of these components can severely limit the developer’s
capacity to quickly learn the functionality of the system.

Cybele does support mobility by allowing agents to mi-
grate from one Cybele environment to another. This is fa-
cilitated by migration and dynamic class-loading facilities.
These facilities, however, are not included in the Open ver-
sion of Cybele. Concurrency is also supported. Each agent
is defined as a group of event-driven activities that share a
common thread, data, and code. As such, agents can wait
and block on each other in the conventional ways associated
with concurrency.

Real time control does not appear to be an option in
OpenCybele. Although various configuration parameters for
any given host can be set beforehand, it does not appear vi-
able to change these parameters in real time once the MAS
is initiated.

OpenCybele appears to be free for both commercial and
non-commercial application. OpenCybele has become an
open-source initiative. As such, they retain the rights to de-
mand source code of anything produced using OpenCybele.
The documentation implies that there is an exclusive ver-
sion of Cybele that is not open-source. Unfortunately, the
cost of this version could not be found.

3.4.2 Rating
Figure 5 shows a summary of the evaluation results out-

lined above. Based on the previously mentioned marking
scheme, an objective measure of the overall MASDK can be
calculated using the above table as a quick-reference. Open-
Cybele scores a value of 18.5 out of a possible 39 points
(47.4%).

chimombe
88 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

Figure 5: OpenCyble Analysis Overview.

4. SIMULATION
As a way of comparing the MASDKs on some equal level,

we decided to simulate the same theoretical problems within
each MASDK. We do this to get a direct sampling of the
MASDKs ability to model a problem and potential solutions.
Figure 6 denotes an overview of the problem we implement
in each of the considered systems.

Figure 6: Theoretical Problem.
In step 1, agent A and agent B are involved in a transac-

tion of some sort. In step 2, both agents have completed the
transaction and agent B broadcasts a falsehood regarding
the event. The intent is for agent B to defame agent A and
destroy A’s reputation. In step 3, agent C informs agent A
of the reported transaction. Agent C is the only friend of A
in this scenario. After agent A clarifies the falseness of the
transaction to agent C, agent C reports the falsehood to its
friend agent D in step 4. In step 5, agent D informs its friend
agent E and the defamation has been nullified. Clearly, this
is one of many potential scenarios. For our purposes, it rep-
resents a typical problem that must be easily representable
in the MASDK.

The following subsections outline the highlights and pit-
falls of using each development kit in simulating th5s prob-
lem.

4.1 AgentSheets
AgentSheets provides a very well thought-out IDE for the

average user that does not have any programming abilities.
In their documentation, AgentSheets states that the prod-
uct is intended for the non-programming audience. It shows
in the fact that agents can only be developed with rigid de-
signs. Programmers generally strive to make their solutions
as generalized as possible. In AgentSheets, generalization of
code is made very difficult through the requirement of using
the user interface for implementation. The programming
concepts of inheritance and polymorphism are not allowed.
As such, it is difficult to implement a simulation that is
flexible enough to structurally change with the problem.

Due to the lack of communication facilities, only signals
can be passed between agents. As such, the ability to re-

spond flexibly to communications is quite limited. Dynamic
information cannot be passed between agents through the
use of messages. Hence, each event in the sequence of ac-
tions required for the problem simulation must be uniquely
labelled. This further limits the capacity to freely alter the
dynamics of the posed problem. These dynamics include the
members involved and the sequence of events.

Overall, the final implementation of the problem was not
satisfactory as the programmer could not easily change the
sequence of events, the number of members, or the roles
of the members. It is desirable to parameterize as many
aspects of the problem as possible. In this implementation,
it was not possible to parameterize any of the aspects (roles,
membership, and actions).

4.2 AgentBuilder
AgentBuilder includes a full IDE interface for agent de-

velopment. While the GUI seems straight foward to use,
there are a few limiting factors that made initial develop-
ment somewhat difficult. These limitations include the fact
that users are not free to simply define a class to use as a
PAC (Project accessory class), they must define the class as
a concept in the AgentBuilder Concept Modeler. Once the
Concept is created it is added to the AgentBuilder Object
Modeler; only then the class be instantiated and used by
the developer. Another factor that made developing in the
AgentBuilder environment somewhat difficult is that per-
forming some simple and common programming tasks such
as defining a variable were achieved using non-intuitive steps
(non-intuitive here refers to our intuition as C++ and Java
developers). An example of such a task is accessing a field
of the object contained in an incomming KQML message.
Such a task includes casting the generic object reference to
the appropriate class type. In agent builder, this task re-
quires choosing the appropriate type in the ’casting type’
drop down menu. In order to indicate this casting type,
the object filed in the KQML message variable must be se-
lected. This is assuming that the desired class type and
KQML message variable have already been defined.

The most glaring limitation in developing a MAS with the
evaluation version of AgentBuilder is that the package will
not allow execution of new code (only the provided examples
will run). This makes developing a MAS possible, but makes
running, debugging and testing of that MAS impossible.

Once the initial problems with the interface were sor-
teed out, the development process went rather smoothly (al-
though, since running the project was impossible, we have
no idea if the implementation works as desired). The rule
editor provides a straight forward interface to define behav-
ioral rules and their components. Those components include

chimombe
Session B2 Communication Networks and Services Research Conference 2003 89

chimombe

previously instantiated PACs, locally defined variables (such
as a variable to hold incomming KQML messages), message
conditions (when), mental conditions (if), as well as actions,
and reasoning statements (then).

Although we did not implement a formal messaging pro-
tocol, the message conditions defined as part of the behav-
ioral rules essentially define an ad-hoc protocol to which the
agents will conform.

4.3 Jack
In contrast to agent sheets, and in a lesser degree to

AgentBuilder, Jack targets the software engineering com-
munity. The implications are that Jack includes facilities
to allow for designs that would be considered more elegant
by the software engineer than the other MASDKs evaluated
here. Becuase Jack is Java-based, all the features of Java are
carried through, and actually expanded upon in the Jack
Agent Language. These features include: polymorphism,
inheritance and abstraction.

The BDI model implemented in Jack is an intuitive and
easy to use model for simulation of a problem, such as the
one described above in section 4. In particular, the rele-
vance() and context() methods used for meta-management
(plan selection) allow for the creation of multiple versatile
plans. These various plans can be implemented so that
agents can react in one of many ways to a single type of
event, based on the specific internal and external state of
the agent at the time the event occurs.

The Jack IDE was very intuitive and relatively easy to use.
Many tasks, specifically associating various components of
the system being developed is achieved through drag and
drop. For example, in order to access an interface to the
agent from a plan, the agent is dragged and dropped on
the plan. It is noteworthy that the Jack documentation
does not include any mention of the GUI or how to use any
part of it. In order to understand how to use the IDE, we
took examples and reverse-engineered them within the IDE.
This was a very effective process in understanding how to
use the IDE. Even though it was effective, it is far more
desirable to have quality documentation that outlines the
IDE’s functionality.

In addition, the documentation is lacking in the descrip-
tion of the use of the relevance() and context() methods. In
particular the consequences of the fact that the relavance()
method is static are not addressed. The limiation we dis-
covered due to this fact, is that a reference to a non-static
interface (such as the SELF agent interface) cannot be ref-
erenced from inside the method.

The quality of the final simulation was very high due to
the application of the previously mentioned software design
features imbedded within Jack. All aspects of the problem
became parameterized. This allowed for a wide variety of
potential simulations. The architecture was general enough
that the defining features of the problem could be specified
at run-time.

4.4 OpenCybele
At the heart of Cybele is the activity centric programming

(ACP) paradigm. This model of agenthood is a simple yet
powerful one; agents are seen simply as a collection of activi-
ties. Agent interaction takes place in the form of one agent’s
activity interacting with an activity of another. Activities
are loosely defined as active objects that act on internal

data. Cybele’s activities can be seen as almost analogous to
the plan construct in a BDI development environment such
as JACK. The BDI plan includes a specification of what
event(s) cause the plan to be executed. Similarly, activities
respond to specific types of events. BDI goals and activi-
ties are similar in that both are essentially an algorithmic
description of a response to some condition or event.

Each activity is considered mutually independent. This
means that activities cannot directly affect one another.
Similarly, Cybele agents are not allowed to directly affect
one another. Cybele implements the idea of autonomy in
its agents by enforcing the rule that no agent has a direct
reference to any other agent or its methods. This constraint,
however, is a particularly artificial one, as programmers can
in fact pass references to agents in messages. The user man-
ual simply warns developers not to engage in such refer-
ence passing at the risk of destroying the autonomy of their
agents.

One of the complicating factors in using OpenCybele in-
volves the use of channels as a communication mechanism.
Agents or activities can communicate with their environ-
ment only through the use of explicitly defined channels.
The channels act as a conduit of activity-generated events
that contain messages for other activities or agents. Broad-
casting of an event occurs through subscription to a chan-
nel with a particular identification tag. Upon receiving the
event, a custom method within the agent delegate class is
used as a callback mechanism with the event as a parameter.
Although OpenCybele maintains that an agent should never
be able to call another agent’s methods, this communication
method allows it by explicitly assigning method invocations
to specific events. Hence, it is believed that autonomy is
violated through this indirect method of control.

The need to explicitly create channels raises design issues
of channel architecture. The need for a channel architecture
is complicated by the fact that point-to-point agent commu-
nication is not possible without the previous establishment
of these channels. Channel handlers are an added compo-
nent to the architecture that represent a unique identifer
that is a combination of the agent’s identification, action
within the agent, channel corresponding to the action, and
specific method corresponding to that action. Point-to-point
communication is represented by sending a message to this
channel handler. It is the agent’s responsibility to attain the
channel handler of the other agent. Hence, there is a large
overhead in establishing this usual method of communica-
tion between two agents.

5. CONCLUSIONS
Figure 7 summarizes our objective findings of the degree

to which each MASDK satisfies the specified criteria. These
criteria include the following: sociality, advanced attitudes,
software engineering, implementation, and technical issues.
We take the stance that software engineering criteria are
very important along with advanced attitudes.

Figure 8 shows the overall numerical results of the objec-
tive portion of our MASDK evaluation. The values in this
figure were obtained using the evaluation results shown in
Figure 7 and the evaluation scheme described in section 2.
The results of this objective evaluation were as expected.

AgentBuilder received the highest evaluation value due to
its impressive performance with regards to the evaluation
criteria. This is despite the fact that the evaluation version

chimombe
90 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

Figure 7: Analysis Overview; the degree to which each MASDK (AgentSheets, AgentBuilder, Jack and
OpenCyble) satisfies the specified criteria.

Figure 8: Evaluation results for AgentSheets,
AgentBuilder, Jack and OpenCyble MASDKs.

of AgentBuilder will not run user-developed agents. Fol-
lowing closely in second place is JACK. Major differences
between AgentBuilder and JACK in terms of the evalu-
ation criteria include: JACK’s lack of an ACL and real-
time control. In third place is AgentSheets. AgentSheets is
severely lacking in many areas of the evaluation, including
agent communication, attitudes, and concurrency. In fourth
place is OpenCybele. While it appears as though OpenCy-
bele is a powerful development environment for some appli-
cations, we discovered that by our evaluation criteria the
system leaves much to be desired. Among others, Open-
Cybele scored very low in the following areas: ACL, atti-
tudes, implementation issues (GUI, skeletons, debugging),
and real-time control.

6. REFERENCES

[1] AgentBuilder. Agentbuilder, an integrated toolkit for
constructing intelligent software agents, reticular
systems, inc., san diego, california, february 1999,
http://www.agentbuilder.com/.

[2] AgentLand. Agentland, news and information on

intelligent software agents and bots, boulogne, france,
http://www.agentland.com; accessed 4-26-02.

[3] AgentSheets. Agentsheets, agentsheets inc., boulder,
colorado, 1996, http://www.agentsheets.com/.

[4] F. Bott. Professional Issues in Software Engineering,
2nd Edition. University College London Press,
London, England, 1995.

[5] T. Eiter and V. Mascardi. Comparing environments
for developing software agents. Technical Report
INFSYS RR-1843-01-02, Technische Universitat Wien,
A-1040 Vienna, Austria, March 2001.

[6] J. Ferber. Multi-Agent Systems: An Introduction to
Distributed Artificial Intelligence. Addison-Wesley,
1999.

[7] S. Green, L. Hurst, B. Nangle, P. Cunningham,
F. Somers, and R. Evans. Software agents: A review.
Technical Report TCS-CS-1997-06, Dublin, 1997.

[8] M. Hoyle and C. Lueg. Open sesame: A look at
personal assistants, 1997.

[9] Jack. Jack intelligent agents - version 3.1, agent
oriented software pty. ltd., australia,
http://www.agent-software.com.au.

[10] G. W. Jones. Software Engineering. John Wiley &
Sons, New York and Toronto, 1990.

[11] H. Nwana, D. Ndumu, and L. Lee. Zeus: A
collaborative agents toolkit, 1998.

[12] H. S. Nwana. Software agents: An overview.
Knowledge Engineering Review, 11(2):205–244, 1995.

[13] R. S. Pressman. Software Engineering, A Practitioners
Approach, 3rd Edition. McGraw-Hill Inc., Singapore,
1992.

[14] M. E. Ras, Z.W.; Zemankova. Methodologies for
Intentional Systems. Springer-Verlag, 1991.

[15] M. Schmidt. Implementing the IEEE Software
Engineering Standard. SAMS Publishing, USA, 2000.

[16] M. Schumacher. Objective Coordination in Multi-agent
System Engineering. Springer-Verlag, Berlin,
Heidelberg, and New York, 2001.

[17] K. Sycara, K. Decker, A. Pannu, M. Williamson, and

chimombe
Session B2 Communication Networks and Services Research Conference 2003 91

chimombe

D. Zeng. Distributed intelligent agents. IEEE Expert,
11(6):36–46, 1996.

[18] W. Walsh and M. Wellman. A market protocol for
decentralized task allocation. In Third International
Conference on Multi-Agent Systems, pages 325–332.
IEEE Press, 1998.

[19] M. Wooldridge. Reasoning About Rational Agents.
MIT Press, Cambridge Massachusettes, London
England, 2000.

chimombe
92 CNSR 2003, Moncton, New Brunswick, Canada Session B2

chimombe

